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Problems related to excitation and propagation of nonlinear eylindrical and spherical waves in media
with weak dispersion oceur in many branches of theoretical and applied physics, Excitations of this kind are
observed, for example, in plasmas [1-3], on the surface of a shallow fluid (tsunami waves, etc.) [4, 5], in gas-
dynamics [6], in nonlinear lattices, ete, The evolution of the corresponding one-dimensional processes,
described by planar waves by means of the Korteweg—de Vries (KdV) equation, has been studied in much
detail [7]. In recent years several attempts have been made at generalizing this equation for describing non-
planar waves with axial or central symmetry [5, 8~11]. Several partial solutions were obtained of the gen-
eralized KdV equation, describing quasistationary solitary pulses and solitons [2, 3, 5, 8-111, and were observed
in a number of experiments [1-4], The present paper is devoted to further study of cylindrical and spherical
waves; several new approximate solutions are obtained, taking into account loss effects in the medium, several
cases involving some prevailing factors (nonlinearity, dispersion, geometric divergence) are worked out, and
the results obtained are compared with experimental data.

1, The boundary-value problem for the KAV equation, generalized to the cases of motion with axial and
central symmetry, can be represented in dimensionless variables in the form [8, 9]

dulor 4+ pudulot + e20%u/on® + qu + Swu/(1 + ur) = 0,
u(0, 1) = f(r),
where T=r —t, t is time, r is the radial coordinate measured from the boundary of the surface at distance »™!
from the center, u is the mass velocity of the medium, py, €, X are small parameters characterizing the non-
linearity, dispersion, and low~frequency dissipation, respectively, S is a coefficient having the values 0, 1/2, 1
for the cases of planar, axial, and central symmetry, respectively, and f is a given positive finite function of
amplitude unity. In this equation we restrict ourselves to models of frequency-independent losses.

(1.1)

We derive the integral consequences of Eq. (1.1). For this we multiply Eq. (1.1) by u®1 (k=1, 2) and
integrate the result over from ~ » to +; taking then into account the condition of rest at infinity, we obtain
L) =T, () o" (1), k=1,2 (1.2)

The quantity I, = S uk (1, r)dv is the total momentum of motion of the medium for k=1, and the total energy for

- k=2, In what follows this quantity plays an important role in constructing approximate solutions and explaining
the nature of their r dependence. The function ¢ (r, r,) is defined by the equation ¢ (r, r ) =[1 +®(r— r*)]'s-
e-X(r—r*), where ry is some fixed value of separation. We note that for x =0 Eq. (1.1) in the cylindrical case
s =1/2 is similar to the ordinary KdV equation, it possesses an infinite set of integrals of motion [12], and can be
represented in the Lax form with corresponding LA pairs [13].

We replace variables in the KdV equation (1.1). We introduce new variables U, x by means of the rela-
tions U=up~i(r, 0)
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for x # 0, Here ® is the probability integral, and Ei is the integral exponential function, In the new variables
Eq. (1.1) is reduced to the form

aU au 1 Ve 0) 1.3
W+U7{+m_ﬁ—0’ p=—— (1.3)
It hence follows that the effective similarity criterion, expressed by the ratio of nonlinear to dispersion effects,
is in this case the quantity ﬁz(x), which is not constant, This fact causes a strong dependence of the solution of
the boundary-value problem on distance, unlike the problem of planar symmetry, where the structure of the

wave pattern is determined by the constant 82 [7].

2. Consider first the case in which 82«1 at the boundary of the surface, and let for simplicity x =0. The
nonlinear term in Eq, (1.3) can then be neglected, and the general solution of the linearized equation (1.3) is [7]

oo

1 1 ,
iy -5 -8 4 T—T ’ .’
u(r,)=man 2 (3e%r) 3 (1 4 ur) —}; Al[w]f(t ydr'. (2.1)
As shown in [7], for asymptotically large r, T the solution (2.1) for initial perturbations with nonvanishing area
is expressed in terms of the Airy function:

u(r, 1) ~ r—(s+%) Ai (_1‘_3_), (2.2)

whence it follows that the wave amplitude decreases as ~r~ 78 in the cylindrical case and ~1r~ 48 in the spheri-
cal case, and the characteristic length increases as ~r’/3, while the first incoming wave has the largest ampli-
tude. We note that the approximate solution (2.2) of the linearized equation {1.3) can be obtained from simple
considerations of dimensionality, For this it is necessary to use the conservation law (1.2) with k=1, Using
the energy conservation law with k=2, we obtain a different self-similar solution whose duration varies with
distance in the same away as for Eq. (2.2), and whose amplitude falls off according to the weaker law ~r(s+ye).
On the basis of these data one can obtain the law of variation of the parameter 82 with distance, determined by
the local value of the product of the wave amplitude by the square of its intensity at each moment of time., Thus,
for the first~type solution 8 ~r~YD(E=18)  and for the second B ~r~U2)E-12)  Ag seen from the expression for
B, in both cases for S+ 0 this parameter does not increase with distance, so that an initially linear wave always
remains linear, We note that in the planar case S =0 the parameter 8 increases with distance for both types of
solution, so that a wave with arbitrarily small amplitude and nonvanishing area always becomes noanlinear, For
a converging wave this parameter increases with decreasing r, except for the case S =1/2 when the second type
of solution leads to an increasing role of nonlinearity which, starting at some distance, becomes substantial
for further description of the wave, Analytic estimates [14] show that usually the amplitude of cylirdrical waves
decreases near the perturbation source as ~r"?3, in agreement with the energy conservation law, while at large
distances the solution (2.2), decreasing as ~r~75, dominates.

It must be noted that the results obtained here refer to the linearized KAV equation, which is, however,
not always valid for describing axially symmetric waves, The invalidity of this equation at short distances from
the center is obvious by the strong enhancement of the role of the last term in Eq, (1.1), while by the derivation
of (1.1) this term is relatively small. This equation also becomes invalid at large distances, since it describes
the leading part of the wave (the low-frequency spectral region), containing a relatively small portion of the
energy of the whole wave., Most of the energy is contained in the high-frequency wave train, and is usually
described by an asymptotic calculation of Fourier—Bessel integrals, without using the single-wave approxi-
mation and being an exact solution of the original problem in the linear statement.

Thus, the results obtained here can be considered as intermediate asymptotic, valid at moderate dis-
tances from the center. As an example, Fig. 1 shows the result of/a numerical calculation of circular waves
from an axially symmetric source, having the form u(0, r) =U0e'(r “)2, a=2, The calculation was performed on
the basis of the linearized equations of shallow water by reduction to Fourier— Bessel integrals, but at some
distance from the center, characteristic of a perturbation scale much smaller than the radius of the circular
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wave, its evolution can be described by Eq, (1.1) withx =0, As seen from Fig, 1, initially (up to r= 2,5a), when
dispersion can be neglected, the wave amplitude decreases as ~r Y2, Then, from r=~2.,5a to r~ 8a the ampli-
tude varies as r"73, in agreement with [14], At r= 8a a transition occurs to the law r"5/e, which is valid up to
r=60a. At long distances, finally, the wave head decreases as ~r~!, Thus, it is seen that the decrease in the
wave amplitude at the portion from r=1.,5a to r =~ 60a can be described within the single~wave equation (1.1)
and is explained by the laws derived in this section.

3. Consider now the case of a boundary-value problem (1.1), for which nonlinear effects dominate over
dispersion effects at short distances from the surface boundary. The dispersion term in (1.1) can then be
neglected, and within the remaining equations, describing simple waves with damping and divergence, one can
find exact solutions of the form

— Hu ' ' )
u(T,r)_j[T—métp(r,O)di ] (3.1)
where the function f is given by the boundary condition, The distance dependence of the wave amplitude is found
from the relation

uexr(1 - »r)8 = const, (3.2)

which follows from (1.2) for k=1, As seen from Eq. (3.2), the amplitude of weak waves varies with distance in
the same way aslinear waves [strongly nonlinear simple waves are not described by Eq. (1.1), and therefore
their amplitude varies according to a different law [6]]. The dependence of the wave amplitude (3.1) on u leads
to a change in its form, The calculation of the distance at which abore wave is formed and finding the height
attenuation laws are performed in the same way as in the problem of sound shock waves in gases and liquids [6],
therefore we provide here the main equations without derivation, Three types of bore waves are possible, as
illustrated in Fig. 2, depending on the shape of the initial perturbation. The following asymptotic equations are
valid for the amplitudes of the first two types:

u~ 34 A~
while for the third type the variation laws of u and A are different:

1w~ r-1, A = const,
where A is the characteristic size of the bore wave. The experimental data obtained in [15] for charge detonation
of 1000 kg of litho-trotyl in shallow water (with depth of order 50 cm) agree quite accurately with Eq, (3.2) for
cylindrical waves (S=1/2) at the surface of the liquid without accounting for x. Figure 3 shows the shapes of sur-
face elevations, selected from [15], at distances 8, 11.6, 15.3, 22.9, and 30,8 m from the detonation epicenter;
it is seen that the wave shape is near a triangular bore wave, and by the data provided in [15] its amplitude
changes as ~ 1015,

Due to the decreasing perturbation amplitude of diverging waves nonlinear effects may become of the
same order as dispersion effects at some distance (if the wave scale varies sufficiently slowly in comparison
with its amplitude), In this case wave propagation is de *nribed by the complete equation (1.1), and the struc-
ture of the wave pattern acquires a quasisoliton charaecter if the last two terms in (1.1) are sufficiently small.*

*Qualitatively the change of regime follows already from (1.3), since the parameter B%(x) is not constant, To
determine the distance at which there is a transition from nonlinear to dispersion nature of the solution it is
necessary to have more accurate knowledge of the parameter %(x), rbase_d on the solution already found.
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4, Taking into account the nonlinearity and dispersion, separate classes of exact solutions of Eq. (1.1)
forx =0and S =1/2 were found in [12, 13]. The nature of these solutions is quite similar to the N-soliton solu~
tions corresponding to the KdV equation in the planar case [7], but their expressions are too awkward and in-
convenient for practical calculations. Another approach for finding approximate solutions of (1.1) was used in
[2, 3, 5, 8-10, 16} and was based on the similarity of the solution of (1,1) to a planar soliton if the two last
terms in (1.1) are sufficiently small, Extensive experimental studies and numerical calculations [1-5], carried
out for both cylindrical and spherical waves, showed that in both cases a decay of an initial perturbation of
arbitrary form into a number of solitons is observed, similar to what happens in the planar case [7}. The soli~
ton amplitude decreases with distance due to divergence and dissipation.

Many authors attempted to obtain theoretically the variation law of soliton amplitude with distance without
account of dissipation. Contradictory data were obtained in this case: According to [5, 8, 9] the soliton ampli-
tude changes as ~r'S, while, according to [10, 16], the amplitude variation law is stronger ~r=(¥3S, In our
opinion this contradiction is explained by the fact that in the first group of studies the variation of the soliton
duration with distance, related to its amplitude, was not taken into account. To find the variation laws of the
soliton parameters with distance we assume, as was already mentioned, that the last two terms in (1.1) are
small, and the solution is of the same form as in the planar case, but with slowly varying parameters, the
amplitude A and the duration A:

r
N =
0
u = A (r)sech? —Ae
where A(r) = Y12¢¥/uA(r). Using the energy conservation law (1.2) and the relation between A and A, we obtain
A ~ r—48e—(3xr A ~ r(/SeAur, (4.2)

It is interesting to note that the same law of decreasing field with distance follows from the exact solutions

[12, 13], as well as from the self-similar solutions found in [11], More rigorous solutions of type (4.1), (4.2),
found by means of asymptotic expansions, were obtained in [16]. The laws of variation of the soliton parameters
(4.2) are in good agreement with the numerical data represented in Fig. 4, where we show the variation of soli-
ton amplitude with distance, calculated on the basis of Eq, (1.1) for x =0. (The straight line ~ Y3 corresponds
to cylindrical, and the straight line ~r to spherical solitons. For comparison we show by the dashed line
the variation law of amplitudes of linear waves without dispersion, and the points are 1-{5], 2= {8], 3—[9]).
There is also good agreement between Egs. (4.1), (4.2) and the experimental data obtained with plasma solitons,
Figure 5 shows the distance dependence of amplitudes of spherically diverging solitons (the points 1 are from
[2], and 2 from [3]). The electromodeling performed by us of cylindrically diverging solitons by means of non~-
linear two-dimensijonal L.C-lattices led to coincidence of the data obtained on variations of soliton amplitudes
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and durations with the calculated equations. Figure 6 shows the experimental data for dimensionless soliton
amplitudes (normalized to the amplitude of the input pulse) and durations (in microseconds). Unfortunately,the
other experimental studies observing solitons in plasma [1] and in water [4] have a more qualitative nature.
We also note that in many experimental studies the term "soliton" is applied to arbitrary solitary waves not
described by Eq. (1.1), which often leads to confusion, since the parameters of these solitary waves vary with
distance according to laws different than (4.1), (4.2). The generalized damping soliton (4,1) is not formed in-
dependently, and in the propagation process it emits a wave packet ("tail") which can be found in the following -
approximation in constructing an asymptotic solution [16]. In the planar case S=0, x = 0 the "tail" structure
was studied in detail in many studies in recent years, Here we restrict ourselves to the expression for a pulse
"ail," which can be found from (1.2) for k=1:

I, —9 126°4)  _orar LappNe(a ) s{ "'%r' —8/3
* = e (1 +ur)-emsle * (14 wr)™" —1]

where A, is the soliton amplitude at r=0, For large r the pulse "tail" equals the soliton pulse in absolute value
and opposes it in sign, decreasing with distance according to the law I ~ _ g~ (2/8W%r ~(2/9)5

The quasisoliton solutions described are valid at restricted distances due to the impossibility of simul-
taneously "balancing" three factors: nonlinearity, dispersion, and divergence. Finally, it is important to note
that in the absence of dissipation (x =0) the solution of the zeroth approximation (4.1), (4.2) in the cylindrical
case remains valid until the correction due to the following approximation becomes sufficiently large. In this
case the ratio of the last term in (1.1) to the dispersion (or nonlinear) term remains small if it is initially
small, In the spherical case the solution (4.1), (4.2) can become unsuitable much earlier, since the ratio men~
tioned above increases with distance. The boundary of the applicability region of this solution is estimated as
ro ~ (1/8) (12/p)*2.  For r>r, the solution becomes linear, and is described by the equations of Sec, 2.

LITERATURE CITED

1. N. Hershkowitz and T. Romesser, "Observations of ion-acoustic eylindrical solitons," Phys. Rev. Lett.,
32, No, 11 (1974).

2. N. Hershkowitz, J, Glaus, and K, E, Lonngren, "Spherical ion-acoustic solitons,” Plasma Phys., 21, No.6
(1979).

3. F, Ze, N, Hershkowitz, C. Chan, and K. E, Lonngren, "Excitation of spherical ion-acoustic solitons with
a conducting probe," Phys, Fluids, 22, No, 8 (1979).

4. L. Tsukabayashi and T. Yagishita, "Propagation of circular solitary waves on shallow water," J, Phys,
Soc, Jpn., 46, No. 4 (1979).

5. A, A, Dorfman, "Axially symmetric problem of unstable finite-amplitude waves generated by displace-
ments of a channel bottom," in: Theoretical and Experimental Studies in Tsunami Problems [in Russian],
Nauka, Moscow (1977). ‘

6. 0. V. Rudenko and S. I, Soluyan, Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau, New
York (1977).

7. V. I. Karpman, Nonlinear Waves in Dispersive Media, Pergamon Press (1975).

8. S. Maxon and J. Viecelli, "Cylindrical solitons,” Phys. Fluids, 17, No, 8 (1974).

9. 8. Maxon and J, Viecelli, "Spherical solitons," Phys, Rev, Lett., 32, 4 (1974).

210



10. L. A, Ostrovskii and E, N, Pelinovskii, "Nonlinear wave evolution of the tsunami type,” in; Theoretical
and Experimental Studies in Tsunami Problems [in Russian], Nauka, Moscow (1977).

11, J. W, Miles, "An axisymmetric Boussinesq wave," J. Fluid Mech., 85, Pt, 1 (1978).

12, F, Calogero and A, Degasperis, "Conservation laws for a nonlinear evolution equation that includes as a
special case cylindrical KdV equation,” Lett, Nuovo Cim., 23, No, 4 (1978),

13. V.S, Dryuma, "Analytical solution of the axially symmetric KdV equation,” Izv, Akad. Nauk SSSR, Ser.
Fiz, Tekh, Mat, Nauk, No. 3 (1976).

14, K. Kajiura, "The leading wave of a tsunami,” Bull, Earthq, Res. Inst., 41, 535 (1963).

15. L. S. Kazachenko and B, D. Khristoforov, "Surface effects in underwater explosions,” Fiz. Goreniya
Vzryva, 8, No. 3 (1972),

16. K. Ko and H. H. Kuehl, "Cylindrical and spherical KAV solitary waves," Phys, Fluids, 22, No, 7 (1879).

MIXING OF A CONTACT BOUNDARY RETARDED
BY STATIONARY SHOCK WAVES

V. E. Neuvazhaev and V. G. Yakovlev UDC 532.517.4

The phenomenon of turbulent mixing of the interface between two gases of different densities retarded by
plane stationary shock waves moving from the light gas into the heavy one was discovered experimentally in[1].

It is shown below that within the framework of the semiempirical models of [1-3] this phenomenon is
determined by the size of the initial perturbations — the roughness of the interface. If the characteristic size
of these perturbations approaches zero, then the width of the mixing region also approaches zero. This
phenomenon is explained by the 6-function character of the accelerstion.

If the acceleration varies smoothly, such as constantly, then mixing will always develop, even with in-
finitely small roughness. The analytical dependence of the width of the mixing region on the initial roughness
is presented. : o

The interface of the gases (liquids) is unstable against small perturbations if the acceleration is directed
from the light to the heavy gas. This instability develops for sufficiently small coefficients of viscosity and
surface tension,

In the semiempirical models of [1-3] it is assumed that turbulent mixing develops simultaneously with
the action of the acceleration, although actually the presence of viscosity and surface tension leads to the ap-
pearance of a finite time interval during which a gradual transition to turbulent motion occurs.

The known self-similar solutions {3-5] were obtained under the assumption of smallness of the initial
perturbations. Actually, these perturbations may not be small. The law according to which the emergence into
a self-similar solution with constant acceleration occurs is established below, A mild "forgetting” of the initial
irregularities of the surface was unexpectedly discovered.

1, Approximate Model

We will consider a diffusional model of turbulent mixing in the approximate formulation of [5]: The fluids
are incompressible, while the turbulent velocity v is assumed to be a function of time only, Then the process
of turbulent mixing will be described by two equations for two unknowns (the density p of the mixture and the
characteristic turbulent velocity v),

2

ar=low (1.1)
2 3
Tt T =, (1.2)
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